
 www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos

Aug 2023, Volume 13, ISSUE 3

UGC Approved Journal

Page | 40

A Distributed Real-time Database Index Algorithm Based on B+

Tree and Consistent Hashing

Chevula Rekha, Arekatla Madhava Reddy, Vanapamula Veerabrahmachari, Dr. Inaganti Shylaja

3 Associate Professor, 1,2 Assistant Professor, 4 Professor

rekhavenkat16@gmail.com, amreddy2008@gmail.com

vveerabrahmachari@gmail.com, shyalajainaganti@gmail.com

Department of CSE, A.M. Reddy Memorial College of Engineering and Technology, Petlurivaripalem,

Narasaraopet, Andhra Pradesh -522601

Abstract

Using B+ Trees and consistent hashes, the authors of this work

suggest a new approach to distributed real-time database

indexing. First, in a distributed system, all storage nodes and

TAG points are mapped to a circular hash space. This allows us

to find exactly where each TAG point is stored. Second,

construct a TAG point hash table that stores the index location

for each TAG point in each storage node. Finally, a B+ Tree

index is created to store and catalogue information on a single

TAG point through time. The suggested strategy has been

shown to be effective via both theoretical analysis and

experimental findings.

Keywords:

Distributed System, Real-time Database, Hierarchy Index,

Consistent Hashing;

 Introduction

With the development of computer technology and

enhancement of Automation technology, there has

been a lot of data access and management

applications with time constraints, such as power

system scheduling, industrial control, securities

trading, aerospace, and so on. These applications

often require real-time sampling of the monitoring

equipment to understand the system real-time

operation status, which with a very high acquisition

frequency, such as 25 per second, 50 per second or

even 100 per second. At the same time, all the data

within the specified time must be saved completely,

thus the need to maintain huge amounts of data.

Also, it calls for Data acquisition, process and make

the right response within a designated time or time

range, with a significant time-sensitive.

 There are so massive, real-time, high-frequency

data that the traditional relational database is hard to

meet the needs of the application, whether to store

or retrieve. In recent years, with the emergence of

real-time database, it is possible to implement the

functions of these applications. And now real-time

database has become a research hotspot [1].

Currently, there are some mature real-time database

systems at home and abroad, including the iSOFT’s

PI[2] and Instep’s eDNA[3] in the United States,

High Soon [4] and LiRTDB [5] real-time database

in China. A real-time database is specially designed

to deal with the data with a characteristic of time

sequence of database management system, which is

used for the storage and management of the real-

time, high frequency and massive data above

mentioned. At the same time, in order to improve the

system scalability, fault tolerance and retrieval

speed, it is necessary to make the real-time database

distributed, that’s to say a distributed real-time

database system is necessary. Just because of the

characteristic of real-time, high frequency, massive

and distributed of distributed real-time database

system, to get a better index method is playing a

crucial role for efficiently storing and retrieval.

Based on this objective, this paper puts forward a

distributed real-time database Hierarchy index

algorithm, first of all, we using the consistency hash

algorithm to make sure the corresponding

relationships between TAGs and storage nodes.

Then, take the TAG name or ID as hash key value,

we record the TAGs in each storage node with a hash

table to maintain the TAGs belong to it. Finally,

construct a B+ Tree for each TAG to index all the

data of the TAG. By comparing several index

methods in Experimental section, it shows the

validity of the proposed method.

 Distributed real-time database

framework

There are two types of nodes in the distributed real-

time database system[6][7][8], one is the center

control server named Nameserver, which can exit

only one in the whole system. It is used to storage

the related metadata of the whole system, such as the

data storage server information, data parting

information, access control information and so on.

Another is the data storage server named Data

Server, which can exit one or several in the whole

system. And also, it could be built in different

http://www.ijbar.org/

 www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos

Aug 2023, Volume 13, ISSUE 3

UGC Approved Journal

Page | 41

computer. This type of node is mainly used to data

storage in distributed real-time database

Fig.1 Distributed real-time database framework diagram

 When the client wants to storage or retrieval data,

first of all, it sends a request to the Nameserver to

inquire the location of the actual data. And then

communicate with the actual Data Server to do the

really data storage or retrieval. That’s to say that

actual data transmission is between Client and Data

Server. In order to improve the availability and

reliability, we erect the Nameserver with Dual-

Computer HotStandby. Normally, Nameserver

active provide service. Once Nameserver Active

with a fault occurs and stops provide service,

Nameserver Standby will automatically switch to

Active mode and providing service to ensure system

availability and reliability. Taking TAG as unit,

Data Server storage lots of data files. In order to

improve the system's usability and fault tolerance,

each data file in the whole distributed real-time

database having many copies. At the same time

TAG is the unit of the dynamic load balancing.

Through the analysis of the dynamic load of each

Data Server, Nameserver dynamic adjustment the

load in the whole distributed real-time database

system. With the heartbeat mechanism, Nameserver

get the operation status of each Data Server. The

Heartbeat package, which contains Data Server’s

CPU, memory, and disk usage, is the basis for

dynamic load balancing. Figure 1 is a typical case of

distributed real-time database framework

Hierarchy index

 Data partition

Along with the increasing amount of data in

distributed real-time database systems, how to better

storage and management the increasing data become

the main index of distributed real-time database

performance. A better method is to part the data of

the system [9]. To meet the performance of the

system requirements, the whole system data will

share in many Data Server through the data partition,

which make the data quantity be much smaller in

every Data Server. Certainly, there are many kinds

of method to part the whole system data. We can part

data with TAG ID. Of course, time range is a good

choice. And someone take data quantity as the

division standard. In this paper, we take TAG ID as

the division standard. In order to improve the system

fault tolerance and minimize the node online or node

offline, which will trigger to rehash, and then a large

number of data will migrate among the whole

system Data Server. Combined with the company

business, we choose the hash algorithm proposed in

literature [10] [11] [12]. With this method, the

remove/add a data node always, it can be as small as

possible to change the already exist key mapping

relation among the Data Server to meet the

requirements of monotonicity, balance and spread.

The steps of the data partition method proposed in

this paper as follows:

To construct hash space

 A value into an n-bit key, 0~2^n-1. Now imagine

mapping the range into a circle, then the key will be

wrapped, and 0 will be followed by 2^n-1. In this

paper, we take n for 32. Then the hash space will as

show in figure 2. (a) And we take the map function

as:

Key = hash(objectID);

Fig.2 (a) hash space; (b) The Distribution of Data Server after

mapping

Map Data Server into hash space

In the system initialization process, we use a hash

function to get all the Data Servers key values and

map them into the hash space. In this paper, we

assume that there are seven Data Servers existing in

the whole system. After the initialization process,

those Data Servers are distributed in the hash space

as show in Figure 2. (b).

http://www.ijbar.org/

 www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos

Aug 2023, Volume 13, ISSUE 3

UGC Approved Journal

Page | 42

Fig.3 (a) the Key value distribution of Data Server and TAG

point after mapping; (b) TAG the Key value distribution after

Data Server failure

 Map TAG point into Data Server

In the process of adding TAG point, client sends

request to Nameserver. Nameserver calculated the

MD5 value of this TAG point according to request

TAG point’s features identification code (such as

point name, point ID). And then map the MD5 value

to the hash space with the same hash algorithm,

looking for Data Server in clockwise direction (hash

key values increase direction), and the first found

Data Server is where this TAG point data will be

storage. In this paper, we suppose the whole system

exist 17TAG points(P1 ~ P17), then after the step of

map Data Server into hash space, the distribution of

those TAG point in the hash space as shown in fig.3.

(a) And the distribution of TAG points has shown in

table 1. Table1 TAG point store in each Data

Server

After deserver failure over

With the consistent hashing algorithm, when a new

Data Server join in or the existing Data Server

failure off, we ensure that nothing should to do with

that except migrate the failure Data Server data to

the other exist Data Server in hash space. As shown

in figure 3 (b), when DataServer1 failure off, we just

need to migrate the data of DataServer1 to

DataServer3, the other components shouldn’t be

changed. When the client wants to insert or query

data, firstly, it sends request to Nameserver to get

where the TAG point is. This is the first step of our

hierarchy Index method: make sure which Data

Server storage the requested TAG point’s data.

 TAG point Index

There are a hash table names Contactable in each

Data Server internal, which record the detailed

information of every TAG point in this Data Server.

The detailed point information include: point name,

point ID, the index location, that to say the root node

location of the tag point B+ Tree, etc. Contactable

realize like that: map(int Pintid, PointConfigItem*

item). In PointConfigItem structure, rtCache point to

the corresponding Cache of TAG point. In Cache

structure, there is a pointer rawHist, pointing to the

root node of B+ Tree. After get the TAG point’s

storage Data Server, the client then communicates

with that Data Server. If requested to add point, we

map the TAG point detailed information to the

appropriate slot of the hash table Contactable by

hashing with the point characteristics identification

code, and then storage the PointConfigItem of that

point to the Contactable. While if requested to insert

value, Data Server calculate the hash value of this

point by using the TAG point name or TAG point

ID, and get the PointConfigItem from

PointHashTable. Then we can get the B+ Tree root

node location and traverse B+ Tree to find where the

insert data storage in. This is the second step of our

hierarchy Index method: make sure the position of

TAG point index. The PointHashTable shows as

figure 4

Fig.4 Data Server hash table with TAG points

Data index

After get the position of TAG point index. The B+

Tree is traversed from roots node if store or retrieve

data requested. And then compare the requested data

time range with the B+ Tree node. If time range

match, then traversed the child node until to the leaf

node. And this leaf node is the node which the

requested data insert in or storage according to the

request type, storage or insert data. This is the third

step of our hierarchy Index method: To determine

where to get or put the request data. In the Data Node

structure of B+ Tree, we make some changes. To

link all of the Data Node in the same B+ Tree with

prep and next pointers, and make it like a doubly

linked list with which it can increase the speed of

http://www.ijbar.org/

 www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos

Aug 2023, Volume 13, ISSUE 3

UGC Approved Journal

Page | 43

batch retrieval. Each TAG point’s B+ Tree index

structure shows in Figure 5

Fig.5 B+ Tree index structure diagram in Data Server side of

distributed real-time database

 Experimental results and analysis

 In this section, we compare the insert and query

efficiency among three different index methods in

the platform of High Soon, which is the main

product of China Realtime Database CO.LTD. For

superiority of partition, we can refer to [6-10]. This

experiment focused on get the insert and retrieval

efficiency among different data index method.

Comparison of insert and retrieve performance

among B+ Tree, RB- tree and T- tree. The test

platform is based on points of 20 million TAG

points; insert 10 million of events to each TAG

point. The results shown in Table 2, the unit for the

million events per second, can be seen from the

table, B+ Tree as a large amount of data in the

persistent system has better performance.

Table 2 Insert and retrieve performance

comparison among four data interpolation index

structure

 Conclusion

In this study, we provide a novel approach to

distributed real-time database indexing. Data

fragmentation rules in a distributed setting may now

be determined in real time thanks to the advent of

the Consistent hashing method. We can keep track

of information for each TAG node using hash tables

and the B+ Tree indexing technique. Through

experimental analysis of insert and retrieval

efficiencies, the suggested approach is shown to be

superior to certain commonly used methods. The

power system is the company's primary market;

thus, the next phase will mostly consist of refining

the index's parameters to meet the insert and

retrieval efficiency standards of various sectors.

References

 [1].Ben Kao, Hector Garcia-Molina. An overview of real-time

database systems[R]: Tech. Report of Princeton University,

Stanford University 1990.

[2].OSI,PI_System_Standards[EB/OL].http://www.osisoft.com/

software-support/what-is-pi/PI_System_Standards.aspx.

[3].Instep, edna_overview[EB/OL].

http://www.instepsoftware.com/edna_overview.asp .

 [4].CRD ,HighSoon.[EB/OL]

.http://crd.sgepri.sgcc.com.cn/html/cp68.shtm HighSoon.

[5].LUCULENT ,LiRTDB[EB/OL]

.http://www.luculent.net/project/project-sssjk.asp LiRTDB.

[6].Fay Chang, Jeffrey Dean, Sanjay Ghemawat, etc. Bigtable:

A Distributed Storage System for Structured Data[J]. Journal

of ACM Transactions on Computer Systems (TOCS). TOCS

Homepage archive Volume 26 Issue 2, June 2008, ACM New

York, USA.

[7].Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung. The

Google file system[J]. Proceeding of SOSP '03 Proceedings of

the nineteenth ACM symposium on Operating systems

principles, Volume 37 Issue 5, December 2003, ACM New York,

NY, USA.

[8].Jeffrey Dean, Sanjay Ghemawat. MapReduce: simplified

data processing on large clusters[C]. Communications of the

ACM - 50th anniversary issue: 1958 – 2008 CACM Homepage

archive. Volume 51 Issue 1, January 2008. ACM New York, NY,

USA.

 [9].Wikipedia, Shard(database architecture)[EB/OL].

http://en.wikipedia.org/wiki/Shard_(database_architecture).

[10].David Karger, Eric Lehman, etc. Consistent Hashing and

Random Trees: Distributed Caching Protocls for Relieving Hot

Spots on the World Wide Web[C]: Proceedings of the twenty-

ninth annual ACM symposium on Theory of computing, New

York, 1997[C].

[11].Giuseppe Decandia, Deniz Hastorun, Madan Jampani, etc.

Dynamo: amazon's highly available key-value store[C].

Proceeding of twenty-first ACM SIGOPS symposium on

Operating systems principles, V.41 Issue 6, 2007. ACM New

York, USA.

[12].THE CODE PROJECT, Consistent hashing [CP].

http://www.codeproject.com/KB/recipes/lib-conhash.aspx.

http://www.ijbar.org/
http://en.wikipedia.org/wiki/Shard_(database_architecture)

